NTPsec

sam.ljay.org.uk

Report generated: Thu Dec 18 14:00:02 2025 UTC
Start Time: Wed Dec 17 05:00:02 2025 UTC
End Time: Thu Dec 18 14:00:02 2025 UTC
Report Period: 1.4 days

Top   Daily Stats   Weekly Stats  

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -41.709 -27.634 -18.794 -0.421 20.930 29.229 45.414 39.724 56.863 11.328 0.375 µs -3.68 9.907
Local Clock Frequency Offset 12.259 12.260 12.272 12.329 12.380 12.395 12.404 0.108 0.135 0.032 12.326 ppm 5.529e+07 2.107e+10

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 0.262 0.343 0.505 9.696 17.319 20.208 23.557 16.814 19.865 5.249 9.260 µs 2.596 5.636

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 0.057 0.090 0.160 0.643 1.085 1.231 1.438 0.925 1.141 0.290 0.628 ppb 5.011 11.95

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -41.709 -27.634 -18.794 -0.421 20.930 29.229 45.414 39.724 56.863 11.328 0.375 µs -3.68 9.907

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.259 12.260 12.272 12.329 12.380 12.395 12.404 0.108 0.135 0.032 12.326 ppm 5.529e+07 2.107e+10
Temp LM0 38.000 38.000 38.000 38.000 39.000 39.000 39.000 1.000 1.000 0.417 38.225 °C
Temp LM1 16.000 17.000 17.000 19.000 21.000 22.000 25.000 4.000 5.000 1.256 18.939 °C
Temp LM2 31.000 31.000 31.000 31.000 32.000 32.000 34.000 1.000 1.000 0.531 31.439 °C
Temp LM3 32.000 32.000 32.000 32.000 32.000 33.000 34.000 0.000 1.000 0.180 32.018 °C
Temp LM4 30.000 30.000 30.000 31.000 32.000 32.000 33.000 2.000 2.000 0.551 30.760 °C
Temp LM5 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C
Temp LM6 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C
Temp LM7 28.000 28.000 29.000 30.000 32.000 33.000 34.000 3.000 5.000 1.041 30.119 °C
Temp LM8 28.000 28.000 29.000 30.000 32.000 33.000 34.000 3.000 5.000 1.046 30.106 °C
Temp LM9 25.000 25.000 26.000 28.000 30.000 31.000 31.000 4.000 6.000 1.165 27.823 °C
Temp ZONE0 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C
Temp ZONE1 27.000 28.000 29.000 30.000 32.000 33.000 34.000 3.000 5.000 0.973 30.078 °C
Temp ZONE2 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 5.000 6.000 7.000 9.000 10.000 11.000 11.000 3.000 5.000 1.026 8.533 nSat 413.9 3190
TDOP 0.540 0.570 0.650 0.930 1.530 2.790 5.490 0.880 2.220 0.451 1.018 11.37 89.4

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Refclock Offset 127.127.28.0 SHM(0)

peer offset 127.127.28.0 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock Offset 127.127.28.0 SHM(0) -703.782 -685.743 -670.220 -631.305 -587.789 -555.371 -527.754 82.431 130.372 25.665 -630.298 ms -1.677e+04 4.306e+05

The offset of a local refclock in seconds. This is useful to see how the measured offset is behaving.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local serial GPS 200 ms; local PPS 20µs.

Clock Offset is field 5 in the peerstats log file.



Refclock Offset 127.127.28.1 SHM(1)

peer offset 127.127.28.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock Offset 127.127.28.1 SHM(1) -41.710 -27.635 -18.795 -0.422 20.931 29.230 45.415 39.726 56.865 11.329 0.375 µs -3.68 9.907

The offset of a local refclock in seconds. This is useful to see how the measured offset is behaving.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local serial GPS 200 ms; local PPS 20µs.

Clock Offset is field 5 in the peerstats log file.



Server Offset 139.143.5.31

peer offset 139.143.5.31 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 139.143.5.31 -61.864 110.305 203.775 550.258 678.087 742.210 794.280 474.312 631.905 121.580 529.281 µs 45.84 175.9

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 193.67.79.202

peer offset 193.67.79.202 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 193.67.79.202 -182.032 -141.948 -81.680 241.801 406.242 460.513 506.578 487.922 602.461 118.670 231.501 µs 2.431 6.997

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:8b0:0:23::205 (ntp2.aa.net.uk)

peer offset 2001:8b0:0:23::205 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:8b0:0:23::205 (ntp2.aa.net.uk) -82.387 46.076 287.000 536.417 694.436 776.306 885.733 407.436 730.230 135.376 517.393 µs 29.77 103.5

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 81.187.26.174

peer offset 81.187.26.174 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 81.187.26.174 -322.142 -263.616 -155.349 146.733 290.334 348.159 452.424 445.683 611.775 115.176 133.387 µs -1.069 5.779

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Refclock RMS Jitter 127.127.28.0 SHM(0)

peer jitter 127.127.28.0 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock RMS Jitter 127.127.28.0 SHM(0) 0.954 2.303 3.784 11.610 25.763 35.126 54.886 21.979 32.823 6.880 12.812 ms 4.434 14.51

The RMS Jitter of a local refclock. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Refclock RMS Jitter 127.127.28.1 SHM(1)

peer jitter 127.127.28.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock RMS Jitter 127.127.28.1 SHM(1) 0.119 0.273 0.590 9.580 27.744 36.227 50.928 27.154 35.954 8.659 10.692 µs 1.721 5.254

The RMS Jitter of a local refclock. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 139.143.5.31

peer jitter 139.143.5.31 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 139.143.5.31 0.013 0.017 0.024 0.089 0.572 1.559 32.709 0.548 1.542 2.815 0.423 ms 7.637 88.2

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 193.67.79.202

peer jitter 193.67.79.202 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 193.67.79.202 0.015 0.020 0.029 0.077 0.355 1.226 19.456 0.326 1.206 1.314 0.204 ms 11.26 166.5

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:8b0:0:23::205 (ntp2.aa.net.uk)

peer jitter 2001:8b0:0:23::205 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:8b0:0:23::205 (ntp2.aa.net.uk) 9.558 13.003 20.769 60.360 359.405 953.120 2,405.422 338.636 940.117 164.101 101.867 µs 6.465 78.81

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 81.187.26.174

peer jitter 81.187.26.174 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 81.187.26.174 0.009 0.019 0.025 0.068 0.351 0.446 17.573 0.325 0.427 1.179 0.179 ms 11.44 170.6

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.259 12.260 12.272 12.329 12.380 12.395 12.404 0.108 0.135 0.032 12.326 ppm 5.529e+07 2.107e+10
Local Clock Time Offset -41.709 -27.634 -18.794 -0.421 20.930 29.229 45.414 39.724 56.863 11.328 0.375 µs -3.68 9.907
Local RMS Frequency Jitter 0.057 0.090 0.160 0.643 1.085 1.231 1.438 0.925 1.141 0.290 0.628 ppb 5.011 11.95
Local RMS Time Jitter 0.262 0.343 0.505 9.696 17.319 20.208 23.557 16.814 19.865 5.249 9.260 µs 2.596 5.636
Refclock Offset 127.127.28.0 SHM(0) -703.782 -685.743 -670.220 -631.305 -587.789 -555.371 -527.754 82.431 130.372 25.665 -630.298 ms -1.677e+04 4.306e+05
Refclock Offset 127.127.28.1 SHM(1) -41.710 -27.635 -18.795 -0.422 20.931 29.230 45.415 39.726 56.865 11.329 0.375 µs -3.68 9.907
Refclock RMS Jitter 127.127.28.0 SHM(0) 0.954 2.303 3.784 11.610 25.763 35.126 54.886 21.979 32.823 6.880 12.812 ms 4.434 14.51
Refclock RMS Jitter 127.127.28.1 SHM(1) 0.119 0.273 0.590 9.580 27.744 36.227 50.928 27.154 35.954 8.659 10.692 µs 1.721 5.254
Server Jitter 139.143.5.31 0.013 0.017 0.024 0.089 0.572 1.559 32.709 0.548 1.542 2.815 0.423 ms 7.637 88.2
Server Jitter 193.67.79.202 0.015 0.020 0.029 0.077 0.355 1.226 19.456 0.326 1.206 1.314 0.204 ms 11.26 166.5
Server Jitter 2001:8b0:0:23::205 (ntp2.aa.net.uk) 9.558 13.003 20.769 60.360 359.405 953.120 2,405.422 338.636 940.117 164.101 101.867 µs 6.465 78.81
Server Jitter 81.187.26.174 0.009 0.019 0.025 0.068 0.351 0.446 17.573 0.325 0.427 1.179 0.179 ms 11.44 170.6
Server Offset 139.143.5.31 -61.864 110.305 203.775 550.258 678.087 742.210 794.280 474.312 631.905 121.580 529.281 µs 45.84 175.9
Server Offset 193.67.79.202 -182.032 -141.948 -81.680 241.801 406.242 460.513 506.578 487.922 602.461 118.670 231.501 µs 2.431 6.997
Server Offset 2001:8b0:0:23::205 (ntp2.aa.net.uk) -82.387 46.076 287.000 536.417 694.436 776.306 885.733 407.436 730.230 135.376 517.393 µs 29.77 103.5
Server Offset 81.187.26.174 -322.142 -263.616 -155.349 146.733 290.334 348.159 452.424 445.683 611.775 115.176 133.387 µs -1.069 5.779
TDOP 0.540 0.570 0.650 0.930 1.530 2.790 5.490 0.880 2.220 0.451 1.018 11.37 89.4
Temp LM0 38.000 38.000 38.000 38.000 39.000 39.000 39.000 1.000 1.000 0.417 38.225 °C
Temp LM1 16.000 17.000 17.000 19.000 21.000 22.000 25.000 4.000 5.000 1.256 18.939 °C
Temp LM2 31.000 31.000 31.000 31.000 32.000 32.000 34.000 1.000 1.000 0.531 31.439 °C
Temp LM3 32.000 32.000 32.000 32.000 32.000 33.000 34.000 0.000 1.000 0.180 32.018 °C
Temp LM4 30.000 30.000 30.000 31.000 32.000 32.000 33.000 2.000 2.000 0.551 30.760 °C
Temp LM5 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C
Temp LM6 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C
Temp LM7 28.000 28.000 29.000 30.000 32.000 33.000 34.000 3.000 5.000 1.041 30.119 °C
Temp LM8 28.000 28.000 29.000 30.000 32.000 33.000 34.000 3.000 5.000 1.046 30.106 °C
Temp LM9 25.000 25.000 26.000 28.000 30.000 31.000 31.000 4.000 6.000 1.165 27.823 °C
Temp ZONE0 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C
Temp ZONE1 27.000 28.000 29.000 30.000 32.000 33.000 34.000 3.000 5.000 0.973 30.078 °C
Temp ZONE2 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C
nSats 5.000 6.000 7.000 9.000 10.000 11.000 11.000 3.000 5.000 1.026 8.533 nSat 413.9 3190
Summary as CSV file


Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of kurtosis. A normal distribution has a kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of skewness. Wikipedia describes it best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!