NTPsec

sam.ljay.org.uk

Report generated: Thu Aug 21 18:00:02 2025 UTC
Start Time: Wed Aug 20 09:00:02 2025 UTC
End Time: Thu Aug 21 18:00:02 2025 UTC
Report Period: 1.4 days

Top   Daily Stats   Weekly Stats  

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -38.410 -28.424 -19.563 -0.136 17.744 25.446 42.813 37.307 53.870 10.328 -0.231 µs -4.343 12.54
Local Clock Frequency Offset 13.534 13.537 13.544 13.597 13.644 13.656 13.661 0.100 0.119 0.031 13.600 ppm 8.788e+07 3.907e+10

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 0.433 0.553 1.058 8.914 16.194 18.562 21.499 15.136 18.009 4.907 8.535 µs 2.657 5.618

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 0.068 0.089 0.160 0.582 0.998 1.135 1.405 0.838 1.046 0.263 0.572 ppb 5.208 12.82

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -38.410 -28.424 -19.563 -0.136 17.744 25.446 42.813 37.307 53.870 10.328 -0.231 µs -4.343 12.54

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 13.534 13.537 13.544 13.597 13.644 13.656 13.661 0.100 0.119 0.031 13.600 ppm 8.788e+07 3.907e+10
Temp LM0 43.000 44.000 44.000 44.000 44.000 44.000 44.000 0.000 0.000 0.050 43.997 °C
Temp LM1 22.000 22.000 23.000 24.000 26.000 26.000 30.000 3.000 4.000 1.036 24.343 °C
Temp LM2 36.000 37.000 37.000 37.000 37.000 37.000 39.000 0.000 0.000 0.181 37.013 °C
Temp LM3 37.000 37.000 37.000 37.000 38.000 38.000 39.000 1.000 1.000 0.491 37.346 °C
Temp LM4 36.000 36.000 36.000 36.000 36.000 37.000 38.000 0.000 1.000 0.211 36.030 °C
Temp LM5 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C
Temp LM6 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C
Temp LM7 33.000 33.000 34.000 35.000 37.000 38.000 39.000 3.000 5.000 0.913 35.194 °C
Temp LM8 32.000 33.000 34.000 35.000 37.000 38.000 39.000 3.000 5.000 0.924 35.179 °C
Temp LM9 32.000 32.000 32.000 33.000 34.000 35.000 36.000 2.000 3.000 0.691 33.432 °C
Temp ZONE0 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C
Temp ZONE1 33.000 33.000 34.000 35.000 37.000 38.000 39.000 3.000 5.000 0.889 35.215 °C
Temp ZONE2 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 5.000 6.000 7.000 8.000 10.000 10.000 11.000 3.000 4.000 0.935 8.417 nSat 536.1 4483
TDOP 0.540 0.590 0.630 0.910 1.490 2.080 4.420 0.860 1.490 0.343 0.968 15.42 92.72

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Refclock Offset 127.127.28.0 SHM(0)

peer offset 127.127.28.0 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock Offset 127.127.28.0 SHM(0) -704.665 -678.686 -658.010 -614.377 -579.574 -568.163 -534.731 78.436 110.522 23.948 -616.401 ms -1.92e+04 5.155e+05

The offset of a local refclock in seconds. This is useful to see how the measured offset is behaving.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local serial GPS 200 ms; local PPS 20µs.

Clock Offset is field 5 in the peerstats log file.



Refclock Offset 127.127.28.1 SHM(1)

peer offset 127.127.28.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock Offset 127.127.28.1 SHM(1) -38.411 -28.425 -19.564 -0.137 17.745 25.447 42.814 37.309 53.872 10.329 -0.231 µs -4.343 12.54

The offset of a local refclock in seconds. This is useful to see how the measured offset is behaving.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local serial GPS 200 ms; local PPS 20µs.

Clock Offset is field 5 in the peerstats log file.



Server Offset 139.143.5.31

peer offset 139.143.5.31 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 139.143.5.31 160.372 318.556 361.782 704.173 894.089 954.907 984.067 532.307 636.351 139.047 686.075 µs 71.7 321

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 193.67.79.202

peer offset 193.67.79.202 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 193.67.79.202 -350.397 -48.207 54.961 423.125 591.747 643.280 664.097 536.786 691.487 147.240 402.054 µs 8.637 22.37

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:8b0:0:23::205 (ntp2.aa.net.uk)

peer offset 2001:8b0:0:23::205 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:8b0:0:23::205 (ntp2.aa.net.uk) 0.207 0.265 0.358 0.755 1.042 1.181 1.418 0.683 0.916 0.194 0.732 ms 29.64 107.6

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 81.187.26.174

peer offset 81.187.26.174 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 81.187.26.174 -198.005 -165.273 -71.013 263.223 429.208 496.085 579.510 500.221 661.358 126.037 249.635 µs 2.524 7.155

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Refclock RMS Jitter 127.127.28.0 SHM(0)

peer jitter 127.127.28.0 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock RMS Jitter 127.127.28.0 SHM(0) 1.116 2.579 4.436 11.781 25.772 33.813 58.559 21.336 31.234 6.625 12.987 ms 4.976 16.42

The RMS Jitter of a local refclock. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Refclock RMS Jitter 127.127.28.1 SHM(1)

peer jitter 127.127.28.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock RMS Jitter 127.127.28.1 SHM(1) 0.137 0.263 0.446 8.825 26.531 34.356 48.028 26.085 34.093 8.569 9.902 µs 1.391 4.206

The RMS Jitter of a local refclock. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 139.143.5.31

peer jitter 139.143.5.31 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 139.143.5.31 8.079 19.631 30.124 91.537 384.718 455.441 1,127.607 354.594 435.810 116.926 129.608 µs 3.085 17.66

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 193.67.79.202

peer jitter 193.67.79.202 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 193.67.79.202 0.013 0.020 0.026 0.090 0.421 1.816 4.961 0.395 1.796 0.490 0.185 ms 6.388 62.34

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:8b0:0:23::205 (ntp2.aa.net.uk)

peer jitter 2001:8b0:0:23::205 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:8b0:0:23::205 (ntp2.aa.net.uk) 8.070 13.624 25.700 91.463 422.732 689.976 1,138.370 397.032 676.352 146.661 137.193 µs 2.764 13.86

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 81.187.26.174

peer jitter 81.187.26.174 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 81.187.26.174 0.020 0.024 0.039 0.121 0.463 9.546 9.662 0.424 9.522 1.189 0.323 ms 4.445 35.68

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 13.534 13.537 13.544 13.597 13.644 13.656 13.661 0.100 0.119 0.031 13.600 ppm 8.788e+07 3.907e+10
Local Clock Time Offset -38.410 -28.424 -19.563 -0.136 17.744 25.446 42.813 37.307 53.870 10.328 -0.231 µs -4.343 12.54
Local RMS Frequency Jitter 0.068 0.089 0.160 0.582 0.998 1.135 1.405 0.838 1.046 0.263 0.572 ppb 5.208 12.82
Local RMS Time Jitter 0.433 0.553 1.058 8.914 16.194 18.562 21.499 15.136 18.009 4.907 8.535 µs 2.657 5.618
Refclock Offset 127.127.28.0 SHM(0) -704.665 -678.686 -658.010 -614.377 -579.574 -568.163 -534.731 78.436 110.522 23.948 -616.401 ms -1.92e+04 5.155e+05
Refclock Offset 127.127.28.1 SHM(1) -38.411 -28.425 -19.564 -0.137 17.745 25.447 42.814 37.309 53.872 10.329 -0.231 µs -4.343 12.54
Refclock RMS Jitter 127.127.28.0 SHM(0) 1.116 2.579 4.436 11.781 25.772 33.813 58.559 21.336 31.234 6.625 12.987 ms 4.976 16.42
Refclock RMS Jitter 127.127.28.1 SHM(1) 0.137 0.263 0.446 8.825 26.531 34.356 48.028 26.085 34.093 8.569 9.902 µs 1.391 4.206
Server Jitter 139.143.5.31 8.079 19.631 30.124 91.537 384.718 455.441 1,127.607 354.594 435.810 116.926 129.608 µs 3.085 17.66
Server Jitter 193.67.79.202 0.013 0.020 0.026 0.090 0.421 1.816 4.961 0.395 1.796 0.490 0.185 ms 6.388 62.34
Server Jitter 2001:8b0:0:23::205 (ntp2.aa.net.uk) 8.070 13.624 25.700 91.463 422.732 689.976 1,138.370 397.032 676.352 146.661 137.193 µs 2.764 13.86
Server Jitter 81.187.26.174 0.020 0.024 0.039 0.121 0.463 9.546 9.662 0.424 9.522 1.189 0.323 ms 4.445 35.68
Server Offset 139.143.5.31 160.372 318.556 361.782 704.173 894.089 954.907 984.067 532.307 636.351 139.047 686.075 µs 71.7 321
Server Offset 193.67.79.202 -350.397 -48.207 54.961 423.125 591.747 643.280 664.097 536.786 691.487 147.240 402.054 µs 8.637 22.37
Server Offset 2001:8b0:0:23::205 (ntp2.aa.net.uk) 0.207 0.265 0.358 0.755 1.042 1.181 1.418 0.683 0.916 0.194 0.732 ms 29.64 107.6
Server Offset 81.187.26.174 -198.005 -165.273 -71.013 263.223 429.208 496.085 579.510 500.221 661.358 126.037 249.635 µs 2.524 7.155
TDOP 0.540 0.590 0.630 0.910 1.490 2.080 4.420 0.860 1.490 0.343 0.968 15.42 92.72
Temp LM0 43.000 44.000 44.000 44.000 44.000 44.000 44.000 0.000 0.000 0.050 43.997 °C
Temp LM1 22.000 22.000 23.000 24.000 26.000 26.000 30.000 3.000 4.000 1.036 24.343 °C
Temp LM2 36.000 37.000 37.000 37.000 37.000 37.000 39.000 0.000 0.000 0.181 37.013 °C
Temp LM3 37.000 37.000 37.000 37.000 38.000 38.000 39.000 1.000 1.000 0.491 37.346 °C
Temp LM4 36.000 36.000 36.000 36.000 36.000 37.000 38.000 0.000 1.000 0.211 36.030 °C
Temp LM5 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C
Temp LM6 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C
Temp LM7 33.000 33.000 34.000 35.000 37.000 38.000 39.000 3.000 5.000 0.913 35.194 °C
Temp LM8 32.000 33.000 34.000 35.000 37.000 38.000 39.000 3.000 5.000 0.924 35.179 °C
Temp LM9 32.000 32.000 32.000 33.000 34.000 35.000 36.000 2.000 3.000 0.691 33.432 °C
Temp ZONE0 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C
Temp ZONE1 33.000 33.000 34.000 35.000 37.000 38.000 39.000 3.000 5.000 0.889 35.215 °C
Temp ZONE2 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C
nSats 5.000 6.000 7.000 8.000 10.000 10.000 11.000 3.000 4.000 0.935 8.417 nSat 536.1 4483
Summary as CSV file


Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of kurtosis. A normal distribution has a kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of skewness. Wikipedia describes it best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!